当前位置:首页  成果展示  论文

成果展示

论文

高性能计算平台近五年论文统计

[1]. Zhang W, Cui R, Wu H, et al. CO oxidation mechanism on a MgO(100) supported Pt x Au 3-x, clusters[J]. Applied Surface Science, 2015, 356:282-288.

[2]. Chang L, Liu Z, Cheng D. Optical properties of Ag–Au nanoclusters for sulphide sensing from TDDFT calculations[J]. Journal of Alloys & Compounds, 2015, 653:363-368.

[3]. Zhang W, Sumer A, Jellinek J, et al. Morphology Tailoring of Pt Nanocatalysts for the Oxygen Reduction Reaction: The Paradigm of Pt13[J]. Chemnanomat, 2015, 1(7):482-488.

[4]. Wang J, Yuan W, Cheng D. Hybrid genetic–particle swarm algorithm: An efficient method for fast optimization of atomic clusters[J]. Computational & Theoretical Chemistry, 2015, 1059:12-17.

[5]. Yang Y, Zhao Z, Cui R, et al. Structures, Thermal Stability, and Chemical Activity of Crown-Jewel-Structured Pd–Pt Nanoalloys[J]. Journal of Physical Chemistry C, 2015, 119(20):10888-10895.

[6]. Xu H, Cheng D. Effect of the Passivating Ligands on the Geometric and Electronic Properties of Au–Pd Nanoalloys[J]. Journal of Cluster Science, 2015, 26(3):799-813.

[7]. Yang C, Chen J F, Zeng X, et al. Design of the Alkali-Metal-Doped WO3 as a Near-Infrared Shielding Material for Smart Window[J]. Industrial & Engineering Chemistry Research, 2014, 53(46):17981-17988.

[8]. Zhang W, Cheng D, Zhu J. Theoretical study of CO catalytic oxidation on free and defective graphene-supported Au-Pd bimetallic clusters[J]. Rsc Advances, 2014, 4(80):42554-42561.

[9]. Niu M, Cheng D, Cao D. Fluorite TiO2(111) Surface Phase for Enhanced Visible-Light Solar Energy Conversion[J]. Journal of Physical Chemistry C, 2014, 118(35):20107-20111.

[10]. Cheng D, Qiu X, Yu H. Enhancing oxygen reduction reaction activity of Pt-shelled catalysts via subsurface alloying.[J]. Physical Chemistry Chemical Physics Pccp, 2014, 16(38):20377-81.

[11]. Li S, Cheng D, Qiu X, et al. Synthesis of Cu@Pd core-shell nanowires with enhanced activity and stability for formic acid oxidation[J]. Electrochimica Acta, 2014, 143(143):44-48.

[12]. Zhao Z, Li M, Cheng D, et al. Understanding the structural properties and thermal stabilities of Au–Pd–Pt trimetallic clusters[J]. Chemical Physics, 2014, 441:152-158.

[13]. Chang L, Xu H, Cheng D. Role of ligand type on the geometric and electronic properties of Ag–Au bimetallic clusters[J]. Computational & Theoretical Chemistry, 2014, 1045(5):35-40.

[14]. Niu M, Cheng D, Cao D. SiH/TiO2 and GeH/TiO2 Heterojunctions: Promising TiO2-based Photocatalysts under Visible Light[J]. Scientific Reports, 2014, 4(6183):4810.

[15]. Cheng D, Xu H, Fortunelli A. Tuning the catalytic activity of Au–Pd nanoalloys in CO oxidation via composition[J]. Journal of Catalysis, 2014, 314(314):47-55.

[16]. Niu M, Cheng D, Cao D. Understanding the Mechanism of Photocatalysis Enhancements in the Graphene-like Semiconductor Sheet/TiO2 Composites[J]. J.phys.chem.c, 2014, 118(11):5954-5960.

[17]. Cheng D, Zhang M, Chen J, et al. Computer Screening of Dopants for the Development of New SnO2-Based Transparent Conducting Oxides[J]. Journal of Physical Chemistry C, 2014, 118(4):2037–2043.

[18]. Fang Y, Cheng D, Wu W. Understanding electronic and optical properties of N–Sn codoped anatase TiO 2[J]. Computational Materials Science, 2014, 85(85):264-268.

[19]. Li M, Li S, Cheng D. Influence of adsorbates on the segregation properties of Au–Pd bimetallic clusters[J]. Computational Materials Science, 2014, 81(Complete):253-258.

[20]. Li M, Li M, Cheng D. Molecular dynamics simulation of the melting behavior of Crown-Jewel structured Au-Pd nanoalloys[C]// china-europe international workshop on alloy nanoparticles. 北京化工大学, 2013.

[21]. Yang Y, Cheng D. Role of Composition and Geometric Relaxation in CO2 Binding to Cu–Ni Bimetallic Clusters[J]. Journal of Physical Chemistry C, 2013, 118(1):250–258.

[22]. Cheng D, Yuan S, Ferrando R. Structure, chemical ordering and thermal stability of Pt-Ni alloy nanoclusters.[J]. Journal of Physics Condensed Matter An Institute of Physics Journal, 462013, 25(35):355008.

[23]. Niu M, Cheng D, Cao D. Understanding Photoelectrochemical Properties of B–N Codoped Anatase TiO2 for Solar Energy Conversion[J]. J.phys.chem.c, 2013, 117(31).

[24]. Cheng D, Jiang K. Structural stability and kinetics of small carbon clusters on a bimetallic Cu/Ni(111) surface: A first-principles study[J]. Surface Science, 2013, 609:85-90.

[25]. Prof.&#x ;Dr. Daojian Cheng, Negreiros F R, Aprà E, et al. Computational Approaches to the Chemical Conversion of Carbon Dioxide[J]. Chemsuschem, 2013, 6(6):944–965.

[26].Fang Y, Cheng D, Niu M, et al. Tailoring the electronic and optical properties of rutile TiO 2, by (Nb + Sb, C) codoping from DFT + U calculations[J]. Chemical Physics Letters, 2013, 567:34-38.

[27]. Niu M, Cheng D, Cao D. Enhanced photoelectrochemical performance of anatase TiO 2, by metal-assisted S–O coupling for water splitting[J]. International Journal of Hydrogen Energy, 2013, 38(3):1251-1257. [28].

[29]. Huang L, Xiang Z, Cheng D, et al. Semiconducting and conducting transition of covalent-organic polymers induced by defects.[J]. Nanotechnology, 2012, 23(39):3050-3061.

[30]. Niu M, Cheng D, Huo L, et al. First principles study on the p-type transparent conducting properties of rutile Ti 1− x In x O 2[J]. Journal of Alloys & Compounds, 2012, 539(42):221-225.

[31]. Xu W, Cheng D, Niu M, et al. Modification of the adsorption properties of O and OH on Pt–Ni bimetallic surfaces by subsurface alloying[J]. Electrochimica Acta, 2012, 76(8):440-445.

[32]. Cheng D, Wang W. Tailoring of Pd-Pt bimetallic clusters with high stability for oxygen reduction reaction[J]. Nanoscale, 2012, 4(7):2408-15.

[33]. Cheng L, Cao D. Designing a Thermo-switchable Channel for Nanofluidic Controllable Transportation[J]. Acs Nano, 2011, 5(2):1102.

[34]. Cheng L, Cao D. Aggregation of polymer-grafted nanoparticles in good solvents: a hierarchical modeling method.[J]. Journal of Chemical Physics, 2011, 135(12):293.

[35]. Cheng L, Cao D. Self-Assembly of Star-Polymer-Attached Nanospheres for Polymer Nanocomposites[C]// Asia-Pacific Software Engineering Conference. IEEE Computer Society, 2010:539-539.

[37]. Zhao B D, Li G L, Shi Y Z, et al. Synthesis and optical properties of novel D–π–A–π–D type cationic cyclopentadienyliron complexes of arenes[J]. Rsc Advances, 2015, 5(67):54749-54756.

[38]. Liu J, Jia X, Li G, et al. Synthesis and optical properties of a D-A-D cationic cyclopentadienyl iron complex containing double arylazo chromophores[J]. Research on Chemical Intermediates, 2014, 41(11):8245-8255.

[39]. Mengqiang Wang, Xiaoyu Ma, Jinghua Yu,. Aromatic amine-sulfone/sulfoxide conjugated D–π–A–π–D type dyes in photopolymerization under 405nm and 455nm laser beams[J]. Polymer Chemistry, 2015, 6(24):4424-4435.

[40]. Chao P, Li Y, Gu X, et al. Novel phosphorus–nitrogen–silicon flame retardants and their application in cycloaliphatic epoxy systems[J]. Polymer Chemistry, 2015, 6(15):2977-2985. [41]. Wang T, Liu J, Han J, et al. Synthesis and optical properties of two cationic cyclopentadienyliron complexes of arene containing the triphenylbutene structure[J]. Research on Chemical Intermediates, 2015, 41(8):5095-5108.

[42]. Shi Y, Li G, Zhao B, et al. Synthesis and optical properties of cationic cyclopentadienyl iron complexes with diphenylacetylene chromophores[J]. Inorganica Chimica Acta, 2015, 427:259-265.

[43]. Ye H, Tian G, Shi L, et al. Polymer memory devices with widely tunable memory characteristics based on functional copolynaphthalimides bearing varied fluorene and triphenylamine moieties[J]. European Polymer Journal, 2015, 63:45-57.

[44]. Zhang H, Tan T, Van d S D. Generalized Born and Explicit Solvent Models for Free Energy Calculations in Organic Solvents: Cyclodextrin Dimerization.[J]. Journal of Chemical Theory & Computation, 2015, 11(11):5103.

[45]. Feng Y, Ning N, Zhang L, et al. Evolution of conductive network and properties of nanorod/polymer composite under tensile strain.[J]. Journal of Chemical Physics, 2013, 139(2):3226.

[46]. Ye Y, Zhang C, Tian M, et al. Macroscopic and Microscopic ****yses of Hydrophobic Modification of Rubbers with Silica Nanoparticles[J]. Journal of Physical Chemistry C, 2015, 119(36):150827092435009.

[47]. Wei Z, Ning N, Zhang L, et al. Density Functional Theory of Polymer Structure and Conformations[J]. Polymers, 2016, 8(4):121.

[48]. Feng Y, Zou H, Tian M, et al. Relationship between Dispersion and Conductivity of Polymer Nanocomposites: A Molecular Dynamics Study[J]. Journal of Physical Chemistry B, 2012, 116(43):13081-8.

[49]. Feng Y, Ning N, Zhao Q, et al. Role of block copolymer morphology on particle percolation of polymer nanocomposites.[J]. Soft Matter, 2014, 10(41):8236.

[50]. Wei Z, Hou Y, Ning N, et al. Theoretical Insight into Dispersion of Silica Nanoparticles in Polymer Melts.[J]. Journal of Physical Chemistry B, 2015, 119(30):9940-8.

[51]. Feng Y, Ning N, Wei Z, et al. Towards optimization of electrical network and mechanical property of polymer nanocomposites with grafted nanoparticles[J]. Polymer, 2014, 55(14):3178-3185.

[52]. Yi Y, Ming T, Chen Z, et al. Understanding Controls on Wetting at Fluorinated Polyhedral Oligomeric Silsesquioxane/Polymer Surfaces[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2016, 32(1):230.

[53]. Wang M, Ma D, Shi K, et al. The role of conjugated side chains in high performance photovoltaic polymers[J]. Journal of Materials Chemistry A, 2015, 3(6):2802-2814.

[54]. Wang L, Shi S, Ma D, et al. Improved Photovoltaic Properties of Donor −Acceptor Copolymers by Introducing Quinoxalino[2,3  b] porphyrin as a Light-Harvesting Unit [J]. Macromolecules, 2015, 48(1), pp287-296.

[55]. Zhang S T, Yan H, Wei M, et al. Valence Force Field for Layered Double Hydroxide Materials Based on the Parameterization of Octahedrally Coordinated Metal Cations[J]. Journal of Physical Chemistry C, 2012, 116(5):3421–3431.

[56]. Zhang S T, Yan H, Wei M, et al. Hydrogenation mechanism of carbon dioxide and carbon monoxide on Ru(0001) surface: a density functional theory study[J]. Rsc Advances, 2014, 4(57):30241-30249.

[57]. Zhang H, Tan T, Hetényi C, et al. Cooperative Binding of Cyclodextrin Dimers to Isoflavone Analogues Elucidated by Free Energy Calculations[J]. Journal of Physical Chemistry C Nanomaterials & Interfaces, 2014, 118(13):7163.

[58]. Li L, Jiang Y, Zhang H, et al. Theoretical and experimental studies on activity of Yarrowia lipolytica lipase in methanol/water mixtures[J]. Journal of Physical Chemistry B, 2014, 118(8):1976-1983.

[59].Jiang Y, Li L, Zhang H, et al. Lid closure mechanism of Yarrowia lipolytica lipase in methanol investigated by molecular dynamics simulation.[J]. Journal of Chemical Information & Modeling, 2014, 54(7):2033.

[60]. Zhang H, Lv Y, Tan T, et al. Atomistic Simulation of Protein Encapsulation in Metal-Organic Frameworks[J]. Journal of Physical Chemistry B, 2016, 120(3):477.

[61]. Jiang Y, Zhang H, Feng W, et al. Refined Dummy Atom Model of Mg(2+) by Simple Parameter Screening Strategy with Revised Experimental Solvation Free Energy[J]. Journal of Chemical Information & Modeling, 2015, 55(12):2575.

[62]. Yang J, Zhang H, Tan T. Rational Design of Methodology-Independent Metal Parameters Using a Nonbonded Dummy Model[J]. Journal of Chemical Theory & Computation, 2016, 12(7):3250.

[63]. Gao Y, Cao D, Liu J, et al. Molecular dynamics simulation of the conductivity mechanism of nanorod filled polymer nanocomposites.[J]. Physical Chemistry Chemical Physics, 2015, 17(35):22959-22968. [64].

[65]. Gao Y, Cao D, Wu Y, et al. Destruction and recovery of a nanorod conductive network in polymer nanocomposites via molecular dynamics simulation[J]. Soft Matter, 2016, 12(12):3074-3083.

[66]. Gao Y, Wu Y, Liu J, et al. Controlling the electrical conductive network formation of polymer nanocomposites via polymer functionalization[J]. Soft Matter, 2016, 12(48):9738.

[67]. Zhao B, Jia X, Liu J, et al. Synthesis and Characterization of Novel 1,4-Bis(carbazolyl)benzene Derivatives with Blue-Violet Two-Photon-Excited Fluorescence[J]. Industrial & Engineering Chemistry Research, 2016, 55(6).

[68]. Zhou T, Ma X, Han W, et al. D-D-A dyes with phenothiazine-carbazole/triphenylamine as double donors in photopolymerization under 455 nm and 532 nm laser beams[J]. Polymer Chemistry, 2016, 7(31).

[69]. Ma X, Gu R, Yu L, et al. Conjugated phenothiazine oxime esters as free radical photoinitiators[J]. Polymer Chemistry, 2017.

[70]. Chao P, Gu R, Ma X, et al. Thiophene-substituted phenothiazine-based photosensitisers for radical and cationic photopolymerization reactions under visible laser beams (405 and 455 nm)[J]. Polymer Chemistry, 2016, 7(32).

[71].Jia N, Qi S, Tian G, et al. Tuning Electrical Memory Behavior from Nonvolatile to Volatile by Varying Tethering Positions of the Anthracene Moiety in Functional Polyimides[J]. Journal of Physical Chemistry C, 2016.

[72]. Khan Q U, Jia N, Tian G, et al. Triggering WORM/SRAM Memory Conversion in a Porphyrinated Polyimide via Zn Complexation as the Internal Electrode[J]. Journal of Physical Chemistry C, 2017, 121(17).

[73]. Jia N, Guo J, Tian G, et al. Achieving tunable memory performance from nonvolatile to volatile by altering the trap depth of charge trapping sites in functional imides containing carbazole moieties[J]. Dyes & Pigments, 2017, 146.

[74]. Jia N, Tian G, Qi S, et al. Regulating the Electrical Bistable Memory Characteristics in Functional Polyimides by Varying the Spatial Position of the Electron-Donating Species[J]. European Polymer Journal, 2017, 95.

[75].Jia N, Qi S, Tian G, et al. Tuning the Electrical Memory Behavior from Nonvolatile to Volatile in Functional Copolyimides Bearing Varied Fluorene and Pyrene Moieties[J]. Journal of Electronic Materials, 2017, 46(4):1-10.

[76]. Jia N, Tian G, Qi S, et al. Asymmetric isomerization: an efficient strategy to tune the electrical resistive memory behaviors of functional polyimides containing N-phenylcarbazole moieties[J]. Rsc Advances, 2017, 7(38):23550-23559.

[77].Zhao M, Qiao Z, Chen X, et al. High Photovoltaic Performance of As-casting Devices Based on New Quinoxaline-based Donor-Acceptor Copolymers[J]. Polymer Chemistry, 2017.

[78]. Peng X, Jain S K, Singh J K. Adsorption and Separation of N2/CH4/CO2/SO2 Gases in Disordered Carbons obtained using Hybrid Reverse Monte Carlo Simulations[J]. Journal of Physical Chemistry C, 2017, 121(25).

[79]. Jain S K, Pellenq R J, Gubbins K E, et al. Molecular Modeling and Adsorption Properties of Ordered Silica-Templated CMK Mesoporous Carbons[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2017, 33(9):2109.

[80]. Peng X, Jain S K. Atomic simulation of Xe and Kr separation in silica-templated amorphous mesoporous carbons CMK-3 and CMK-5[J]. Molecular Simulation, 2017.

[81]. Jiang Y, Zhang H, Cui Z, et al. Modeling Coordination-Directed Self-Assembly of M2L4 Nanocapsule Featuring Competitive Guest Encapsulation.[J]. Journal of Physical Chemistry Letters, 2017, 8(9):2082.

[82]. Zhang H, Yin C, Yan H, et al. Evaluation of Generalized Born Models for Large Scale Affinity Prediction of Cyclodextrin Host–Guest Complexes[J]. Journal of Chemical Information & Modeling, 2016, 56(10).

[83]. Sun F, Zhang L, Yan J, et al. The synthesis and photolysis mechanisms of 8-nitroquinoline-based photolabile caging groups for carboxylic acid[J]. Journal of Physical Organic Chemistry, 2014, 27(12):981-985.

[84]. Sun F, Chen L, Wei P, et al. Dimerization and Structural Stability of Amyloid Precursor Proteins Affected by the Membrane Microenvironments[J]. Journal of Chemical Information & Modeling, 2017, 57(6).

[85]. Sun F, Xu L, Chen P, et al. Insights into the Packing Switching of the EphA2 Transmembrane Domain by Molecular Dynamic Simulations.[J]. Journal of Physical Chemistry B, 2015, 119(25):7816-7824.

[86]. Sun F, Chen L, Ding X, et al. High-Resolution Insights into the Stepwise Self-Assembly of Nanofiber from Bioactive Peptides[J]. Journal of Physical Chemistry B, 2017, 121(31).