Gaussian Tutorial: Estimating Resource Requirements

Carlos P. Sosa
IBM
and
Patton Fast
Supercomputing Institute
Contents

- IBM SP Overview
- Review common methods
- Alternative algorithms and why the program selects them
- Estimating resource usage
- Allocating memory and disk resources for good performance
- Running Gaussian
IBM SP Overview

78 WinterHawkII, 375 MHz
17 NightHawk, 222 MHz
4 Silver nodes, 333 MHz

Nodes are 4-way
Silver nodes are 333 MHz, 604e, 32-bit
Gaussian Design

- *Gaussian98* has been designed to work efficiently given a variety of computer configurations.

- The program attempts to select the most efficient algorithm given the memory and disk constraints imposed upon it.

- *Gaussian98* offers a wide variety of algorithms.

- An understanding of the possibilities and tradeoffs can help you to achieve optimal performance.
Gaussian Input

%chk=h2o
%nproc=1
%mem=8MW
#p hf/sto-3g opt

water optimization

0 1
 0
 h 1 oh
 h 1 oh 2 a

oh = 0.89
 a = 105.

Control files & system resources
Choice of computational model
Type of calculation
Charge and multiplicity
Coordinates
Link 0 Commands

%mem=N Sets the amount of dynamic memory used to N works (8N bytes). The default is 6MW. N may be followed by a units designation: KB, MB, GB, KW, MW or GW

%nproc(l)=N Requests that the job use up to N processors

%chk=file Locates and names the checkpoint file

%rwf=file Locates and names a single, unified Read-Write file

%KJob LN [M] Tells the program to stop the run after the Mth occurrence of link N

%save Causes Link 0 to save scratch files at the end of the run

%subst LN dir Tells Link 0 to the executable for a link from alternate directory
Sequence of Programs

- **L1**
 - Read and parse route section

- **L101**
 - Read in molecule specification

- **L202**
 - Determine molecular symmetry

- **L301**
 - Set up basis set, compute one-electron integrals

- **L302**
 - Generate initials orbitals

- **L303**

- **L401**
 - Solve SCF equations

- **L502**

- **L601**
 - Assign orbital and wavefunction symmetries, print orbitals, and perform Mulliken population analysis

- **L9999**
Hartree-Fock Energies

\[E_{HF} = \frac{\langle \Psi_o | H | \Psi_o \rangle}{\langle \Psi_o \Psi_o \rangle} ; \quad \frac{\partial E_{HF}}{\partial C_{\mu i}} = 0 \]

\[\sum_v F_{\mu \nu} C_{vi} = \varepsilon_i \sum_v S_{\mu \nu} C_{vi} \]

\[F_{\mu \nu} = h_{\mu \nu} + \sum_{\lambda \sigma} [(\mu \nu \parallel \lambda \sigma) - (\mu \sigma \parallel \lambda \nu)] P_{\lambda \sigma} \]

\[P_{\lambda \sigma} = \sum_i C_{\lambda i}^* C_{\sigma i} \]

\[E_{HF} = \sum_{\mu \nu} P_{\mu \nu} h_{\mu \nu} + \frac{1}{2} \sum_{\mu \nu \lambda \sigma} \left[P_{\mu \nu}^T P_{\lambda \sigma}^T - P_{\mu \sigma}^a P_{\lambda \nu}^a \right] (\mu \nu \parallel \lambda \sigma) + V_{nuc} \]
Two-electron Integrals

Traditional approach:

- Formally $O(N^4)$; often less in practice
- Atomic Orbital (AO) basis:
 - Integrals in AO basis stored on disk in random order
 - Traditional approach for SCF
 - Sorting into standard order involves substantial extra storage
- Molecular Orbital (MO) basis:
 - Integrals transformed from AO to MO
 - Stored on disk in addition to AO integrals
 - Traditional approach beyond SCF
Two-electron Integrals

- **Incore:**
 - AO integrals are stored in main memory
 - Canonical order, including zeros
 - No I/O
 - Ordering facilitates optimization

- **Direct:**
 - Recompute integrals as needed
Direct SCF

- Traditional approach:
 - Integrals are expensive
 - Compute integrals once and store
 - Read integrals once each SCF iteration
- Almlof:
 - Integrals aren't that expensive
 - I/O can be slow
 - Amount of disk limits size of calculations
 - Recompute integrals each SCF iteration
- Can be clever about neglecting integrals if their use is known:

\[\Delta F^{(n)} = F^{(n)} - F^{(n-1)} = \sum \Delta P_{\lambda\sigma}^{(n)} \langle \mu \lambda \| v\sigma \rangle \]
Conventional SCF

1. Setup
2. Evaluate Integrals
3. Form Fock Matrix
 - *no*
 - New Density: Converged?
 - *no*
 - Evaluate Integrals
 - Form Fock Matrix
 - I/O
 - Disk
 - scf=conventional
 - *yes*
 - New Density: Converged?
 - *yes*
 - Populations,...
Direct SCF

Setup

Form Fock Matrix

Evaluate Integrals

New Density: Converged?

no

yes

Populations,...

scf=direct (default)
Incore SCF

Setup

Evaluate Integrals

Form Fock Matrix

New Density: Converged?

no

yes

Populations,...

scf=incore

MEMORY

- $N^4/8$ memory ($N^4/4$ for open-shell)
- Fast
- Memory needed:
 - 100 basis functions = 100 MB
 - 200 basis functions = 1600 MB
 - 300 basis functions = 8100 MB
Direct versus Conventional SCF

Almlof and Alrichs: SCF is not N^4!
- Direct SCF is faster than conventional for large cases
\(C_nH_{n+2} \) Hydrocarbons

<table>
<thead>
<tr>
<th>n</th>
<th>Conventional (Sec.)</th>
<th>InCore (Sec.)</th>
<th>Direct (Sec.)</th>
<th>Basis Functions</th>
<th>File Sizes(C)</th>
<th>File Sizes(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.8</td>
<td>31.6</td>
<td>5.3</td>
<td>23</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>4.5</td>
<td>32.4</td>
<td>7.4</td>
<td>42</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>7.1</td>
<td>34.1</td>
<td>12.8</td>
<td>61</td>
<td>36</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>12.8</td>
<td>38.1</td>
<td>22.2</td>
<td>80</td>
<td>66</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>23.5</td>
<td>43.7</td>
<td>35.8</td>
<td>99</td>
<td>116</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>43.0</td>
<td>52.9</td>
<td>54.8</td>
<td>118</td>
<td>198</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>76.5</td>
<td>66.1</td>
<td>79.2</td>
<td>137</td>
<td>312</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>127.3</td>
<td>83.7</td>
<td>111.5</td>
<td>156</td>
<td>466</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>207.1</td>
<td>-</td>
<td>149.6</td>
<td>175</td>
<td>646</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>343.4</td>
<td>-</td>
<td>194.3</td>
<td>194</td>
<td>862</td>
<td>36</td>
</tr>
</tbody>
</table>

Timings on an IBM WinterHawkII, 375 MHz
Gaussian98 Rev. A10
Incore memory: 900MB
Conv. & Direct memory: 48MB
C_nH_{n+2} Hydrocarbons CPU (C & D)

![Graph showing comparison between Conventional and Direct methods for C_nH_{n+2} hydrocarbons on IBM Power3 G98 A.10. The graph plots the time in seconds on the y-axis against n on the x-axis. The Conventional method shows a higher time trend compared to the Direct method.]
C_nH_{n+2} Hydrocarbons CPU (C, D, & I)

IBM Power3
G98 A.10
C_nH_{n+2}
C_nH_{n+2} Hydrocarbons File Sizes

IBM Power3 G98 A.10 C_nH_{n+2}
Hartree–Fock Gradients

\[E_{\text{HF}}^x = \sum_{\mu\nu} P_{\mu\nu} h_{\mu\nu}^x + \frac{1}{2} \sum_{\mu\nu\lambda\sigma} P_{\mu\nu} P_{\lambda\sigma} (\mu \lambda \parallel \nu \sigma) + \sum_{\mu\nu} W_{\mu\nu} S_{\mu\nu}^x + V_{\text{nuc}}^x \]

where,

\[W_{\mu\nu} = -\sum_{\lambda\sigma} P_{\mu\lambda} F_{\lambda\sigma} P_{\sigma\nu} \]
SCF Algorithms

- **Direct:**
 - $O(N^{2.3})$ CPU
 - Modest memory - 4 MW
 - Faster than conventional
 - Faster than InCore for very large jobs, but can't use InCore for these anyway

- **Forces and Optimizations:**
 - Integral derivatives can be used as computed
 - No new storage issues
 - Energy + Gradient only 20-30% more CPU than energy
MP2 Energy

\[E_{MP2} = E_{HF} + E^{(2)} = E_{HF} + \frac{1}{4} \sum a_{ij}^{ab}(ij \parallel ab) \]

where,

\[a_{ij}^{ab} = \frac{(ij\parallel ab)}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b} \]

Sum for \(E^{(2)} \) is \(O(O^2V^2) \), so expensive step is forming \((ij\parallel ab)\).
Traditional MP2 Method

Traditional method: disk-based integral transformation
Conventional MP2 Energy

Setup

Evaluate and Store Integrals

Solve SCF

Transform Integrals

Antisymmetrize, form $E(2)$

I/O → Disk
Direct MP2

- Compute integrals while transforming
- Double integral evaluation permits full vectorization
- No external storage or I/O
- OVN memory minimum
- Do O^2VN/Memory integral evaluations, up to O total
Semi-Direct MP2

- Use memory and disk to minimize CPU time
- Sort (ia|\lambda\sigma) into (\lambda\sigma|ia) on disk
- As little as $O(N^2)$ memory and $N^3/2$ disk
- Do $(1/2)OVN^2/\text{MaxDisk}$ integral evaluations
- $OVN^2/2$ disk for one pass
Semi-Direct MP2 Energy

1. Setup
2. Direct SCF
3. Form $(ia|\lambda\sigma)$ for current batch of i's
4. Transpose to $(\lambda\sigma|ia)$
5. Form $<ij||ab>$
6. Update $E(2)$, More i's?
7. Evaluate Integrals
8. Disk I/O

Integrals Evaluation Flowchart
InCore MP2

- Keep AO integrals in main memory
- Need double-length list
- $N^4/4$ memory for closed or open shell
MP2 Gradients

Traditional algorithm:
- Disk for derivatives and energy terms
- I/O time for sorting

Direct algorithm:
- N^3 memory for each i in batch
- Size of system limited by memory

Semi-direct algorithm:
- Almost always preferred
- Minimum $O(N^2)$ memory, $N^3/2$ disk
- 6-8 MW for spdf
MP2 Frequencies

- Only semi-direct algorithm
- 8MW for f functions, 12MW for g functions
- MP2=stingy option default for better disk re-use
- MP2=NoStingy uses more disk, is slightly faster
- Minimum disk
 - $N^4/4 + OVN^2/2$ words
 - MaxDisk obeyed
 - Tries calculation in minimum disk regardless
C_nH_{n+2} Hydrocarbons-MP2 Calculations

<table>
<thead>
<tr>
<th>n</th>
<th>Semi-direct (Sec.)</th>
<th>Fully-direct (Sec.)</th>
<th>Basis Functions</th>
<th>File Sizes (SD)</th>
<th>File Sizes (FD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.7</td>
<td>6.2</td>
<td>23</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>5.6</td>
<td>8.7</td>
<td>42</td>
<td>29</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>8.5</td>
<td>15.5</td>
<td>61</td>
<td>42</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>14.9</td>
<td>28.4</td>
<td>80</td>
<td>71</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>51.3</td>
<td>49.2</td>
<td>99</td>
<td>126</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>85.0</td>
<td>80.4</td>
<td>118</td>
<td>221</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>130.9</td>
<td>141.6</td>
<td>137</td>
<td>361</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>194.3</td>
<td>205.9</td>
<td>156</td>
<td>548</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>274.5</td>
<td>324.5</td>
<td>175</td>
<td>779</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>368.0</td>
<td>474.7</td>
<td>194</td>
<td>1072</td>
<td>36</td>
</tr>
</tbody>
</table>

Timings on an IBM WinterHawkII, 375 MHz
Gaussian98 Rev. A10
Semi-direct & Fully Direct memory: 48MB
C_nH_{n+2} Hydrocarbons CPU (SD & FD)

IBM Power3
G98 A.10
C_nH_{n+2}
C_nH_{n+2} Hydrocarbons File Sizes-MP2

IBM Power3
G98 A.10
C_nH_{n+2}
MP2 - Frequency

<table>
<thead>
<tr>
<th>n</th>
<th>Single-Point (Sec.)</th>
<th>Frequency (Sec.)</th>
<th>Basis Functions</th>
<th>File Sizes(SP)</th>
<th>File Sizes(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.7</td>
<td>22.1</td>
<td>23</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>5.6</td>
<td>48.0</td>
<td>42</td>
<td>29</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>8.5</td>
<td>169.1</td>
<td>61</td>
<td>42</td>
<td>143</td>
</tr>
<tr>
<td>4</td>
<td>14.9</td>
<td>544.0</td>
<td>80</td>
<td>71</td>
<td>351</td>
</tr>
<tr>
<td>5</td>
<td>51.3</td>
<td>1464.6</td>
<td>99</td>
<td>126</td>
<td>751</td>
</tr>
<tr>
<td>6</td>
<td>85.0</td>
<td>3369.7</td>
<td>118</td>
<td>221</td>
<td>1435</td>
</tr>
</tbody>
</table>
MP2 Frequency & SP CPU Comparison

IBM Power3
G98 A.10
CₙHₙ₊₂
MP2 Freq & SP Disk Usage Comparison

File Size (MB)

Single-Point

Frequency

IBM Power3
G98 A.10
C_{n}H_{n+2}
Integral Transformation

Traditionally used for everything after SCF:

$$(pq \mid rs) = \sum_{\sigma} C_{\sigma s} \sum_{\lambda} C_{\lambda r} \sum_{v} C_{v q} \sum_{\mu} C_{\mu p}(\mu v \mid \lambda \sigma)$$

Gaussian uses semi-direct algorithm:
- Fixed minimum memory for integral evaluation
- Better behavior for large systems and limited memory
- Generate $<pq||rs>$ during transformation
- Can make $<ij||ab>$ using only $O(O^2N^2)$ disk
MAXDISK

Specifies the amount of disk storage available for scratch data, in 8-bytes words

The units can be: KB, MB, GB, KW, MW or GW

example:
maxdisk=8MB
Size Dependence of Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Formal CPU</th>
<th>Formal Memory</th>
<th>Formal Disk</th>
<th>Actual CPU</th>
<th>Actual Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv. SCF</td>
<td>N^4</td>
<td>N^2</td>
<td>N^4</td>
<td>$N^{3.5}$</td>
<td>$N^{3.5}$</td>
</tr>
<tr>
<td>Incore SCF</td>
<td>N^4</td>
<td>N^4</td>
<td>-</td>
<td>N^4</td>
<td>N^2</td>
</tr>
<tr>
<td>Direct SCF</td>
<td>N^4</td>
<td>N^2</td>
<td>-</td>
<td>$N^{2.3}$</td>
<td>N^2</td>
</tr>
<tr>
<td>Conv. MP2</td>
<td>ON^4</td>
<td>N^2</td>
<td>N^4</td>
<td>ON^4</td>
<td>N^4</td>
</tr>
<tr>
<td>Dir MP2 SP</td>
<td>ON^4</td>
<td>OVN</td>
<td>-</td>
<td>O^2N^3</td>
<td>N^2</td>
</tr>
<tr>
<td>SD MP2 SP</td>
<td>ON^4</td>
<td>N^2</td>
<td>VN^2</td>
<td>O^2N^3</td>
<td>VN^2</td>
</tr>
<tr>
<td>Conv. MP2 Force</td>
<td>ON^4</td>
<td>N^2</td>
<td>N^4</td>
<td>ON^4</td>
<td>N^4</td>
</tr>
<tr>
<td>Dir MP2 Force</td>
<td>ON^4</td>
<td>N^3</td>
<td>-</td>
<td>O^2N^3</td>
<td>N^2</td>
</tr>
<tr>
<td>SD MP2 Force</td>
<td>ON^4</td>
<td>N^2</td>
<td>N^3</td>
<td>O^2N^3</td>
<td>N^3</td>
</tr>
<tr>
<td>MP3, CISD, QCISD</td>
<td>O^2N^4</td>
<td>N^2</td>
<td>N^4</td>
<td>O^2N^4</td>
<td>N^4</td>
</tr>
<tr>
<td>MP4, QCISD(T)</td>
<td>O^3V^4</td>
<td>N^2</td>
<td>N^4</td>
<td>O^3V^4</td>
<td>N^4</td>
</tr>
</tbody>
</table>

O: Number of occupied orbitals
V: Number of virtual orbitals
N: Number of basis functions
Parallel Gaussian

Efficiency Considerations
Amdahl's Law

Although a code contains parallel constructs, the serial processing in the code will dominate its overall performance.

To estimate expected parallel speedups:

$$S(N) = \frac{1}{f_S + \frac{f_P}{N}}$$

- $S(N)$: Maximum expected speedup from parallelization
- N: Number of processors available for parallel execution
- f_P: Fraction of a program that can execute in parallel
- f_S: Fraction of a program that is serial = $1 - f_P$
Amdahl's Law Example

![Graph showing Amdahl's Law example]

- **X-axis:** Number of Processors
- **Y-axis:** Parallel Fraction

The graph illustrates the impact of adding processors to a system, showing how the parallel fraction decreases as the number of processors increases. The graph highlights the diminishing return on performance improvement as more processors are added.
Estimating Memory Requirements

Single processor memory requirement = \(M + 2N^2 \)

- \(M = \) Required value for a job type
- \(N = \) Number of Basis Functions

<table>
<thead>
<tr>
<th>SCF Energies</th>
<th>f functions</th>
<th>g functions</th>
<th>h functions</th>
<th>i functions</th>
<th>j functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>~6 MW</td>
<td>~6 MW</td>
<td>~12 MW</td>
<td>~25 MW</td>
<td>~64 MW</td>
<td></td>
</tr>
<tr>
<td>SCF Gradients</td>
<td>~6 MW</td>
<td>~7 MW</td>
<td>~19 MW</td>
<td>~40 MW</td>
<td></td>
</tr>
<tr>
<td>SCF Frequencies</td>
<td>~6 MW</td>
<td>~11 MW</td>
<td>~30 MW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP2 Energies</td>
<td>~6 MW</td>
<td>~7 MW</td>
<td>~14 MW</td>
<td>~30 MW</td>
<td>~74 MW</td>
</tr>
<tr>
<td>MP2 Gradients</td>
<td>~6 MW</td>
<td>~8 MW</td>
<td>~18 MW</td>
<td>~40 MW</td>
<td></td>
</tr>
<tr>
<td>MP2 Frequencies</td>
<td>~8 MW</td>
<td>~12 MW</td>
<td>~30 MW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 MW = 1,048,576 Words = 8,388,608 bytes

Example: 300 basis functions HF geometry optimization using g functions would require about 7.2 MW (~60MB)
FreqMem Utility

- FreqMem utility:
 - Returns minimum memory size for optimal performance

- Example:
 - `freqmem N_A N R/U C/D SP/SPD/SPDF`

 - N_A = number of atoms
 - N = number of basis functions
 - R/U = restricted/unrestricted
 - C/D = conventional/direct
 - SP/SPD/SPDF = functions in basis set
Memory Allocation Empirical Formula

Parallel calculations with more than one processor on shared-memory systems require additional memory.

\[\text{total_mem} = \text{sp_mem} + (n - 1) \times 0.75 \times \text{sp_mem} \]

total_mem = total memory required for the parallel run
sp_mem = single processor memory required
n = number of processors
Parallel SCF

*Deck PRSMsu

subroutine PRSMsu

\[\text{loop over } N\text{processors} \]

call PRISM

\[\text{end loop} \]

\[\text{loop over } N\text{processors (serial code)} \]

add $1/N\text{processors}$ Fock Matrix contributions

\[\text{end loop} \]
Parallel Speedup & Efficiency

Speedup (S) is defined as the ratio of the serial run time (elapsed, t_s) over the time that it takes to do the same problem in parallel (elapsed time, t_p)

$$S = \frac{t_s}{t_p}$$

$$e = \frac{S}{N_{processors}}$$
Extrapolated Speedup

\[S = \frac{1}{\left(\frac{p}{N_{\text{processors}}}\right) + (1-p)} \]

\[p = \frac{S_{N_{\text{processors}}} - S_{M_{\text{processors}}}}{(1-1/N_{\text{processors}}) \times S_{N_{\text{processors}}} - (1-1/M_{\text{processors}}) \times S_{M_{\text{processors}}}} \]
Parallel Links in Gaussian98

<table>
<thead>
<tr>
<th>Link</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L302</td>
<td>Overlap integrals</td>
</tr>
<tr>
<td>L303</td>
<td>One-electron properties integrals</td>
</tr>
<tr>
<td>L502</td>
<td>Closed-and open-shell SCF solution</td>
</tr>
<tr>
<td>L506</td>
<td>GVB solution</td>
</tr>
<tr>
<td>L508</td>
<td>Quadratically convergent SCF solution</td>
</tr>
<tr>
<td>L510</td>
<td>Multiconfiguration SCF solution</td>
</tr>
<tr>
<td>L602</td>
<td>One-electron properties</td>
</tr>
<tr>
<td>L703</td>
<td>Two-electron integral first or second derivative evaluation</td>
</tr>
<tr>
<td>L906</td>
<td>Direct and semi-direct MP2 energies and gradients</td>
</tr>
<tr>
<td>L914</td>
<td>Calculates excited states using CI with single excitations</td>
</tr>
<tr>
<td>L1002</td>
<td>CPHF solution and contribution of coefficient derivatives to Hartree-Fock second derivatives</td>
</tr>
<tr>
<td>L1014</td>
<td>Coupled perturbed CI singles</td>
</tr>
<tr>
<td>L1110</td>
<td>Two-electron contributions to Fock matrix derivatives with respect to nuclear coordinates</td>
</tr>
<tr>
<td>L1112</td>
<td>Forms most of the terms in MP2 second derivatives</td>
</tr>
</tbody>
</table>

Linda links
Crown ether Example

| Processors | Elapsed Time (Sec)
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4549</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ethernet¹</td>
<td>2271</td>
</tr>
<tr>
<td>switch¹</td>
<td>2268</td>
</tr>
<tr>
<td>shared-memory²</td>
<td>2365</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>ethernet¹</td>
<td>652</td>
</tr>
<tr>
<td>switch¹</td>
<td>610</td>
</tr>
<tr>
<td>shared-memory²</td>
<td>626</td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>ethernet¹</td>
<td>442</td>
</tr>
<tr>
<td>switch¹</td>
<td>372</td>
</tr>
<tr>
<td>shared-memory²</td>
<td>386</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

¹ 16X(4-way nodes), Power3-II, 375 MHz, 8MB L2

² 1X(16-way node), Power3-II, 375 MHz, 8MB L2

³ Gaussian98 Rev. A.7, xlf 5.1.1 Compiler
Crown ether Parallel Speedup

(OCH₂)$_7$, Crown ether
HF/6-31G* FOPT OPTCYC
test178

test178: RHF/6-31G** SCF=DIRECT POP=NPA PROP=FIT
300 Basis Functions
Full Point Group D_{3h}

<table>
<thead>
<tr>
<th>Processor</th>
<th>Time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>153.39</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>109.86</td>
<td>1.39</td>
</tr>
<tr>
<td>4</td>
<td>82.90</td>
<td>1.85</td>
</tr>
<tr>
<td>8</td>
<td>90.01</td>
<td>1.70</td>
</tr>
<tr>
<td>16</td>
<td>84.48</td>
<td>1.82</td>
</tr>
</tbody>
</table>

Gaussian 98 Rev. A.7
Shared-memory
Symmetry reduces the total number of integrals

test178: RHF/6-31G** SCF=DIRECT POP=NPA PROP=FIT
300 Basis Functions
Full Point Group D_{3h}
α-pinene SP Scalability

<table>
<thead>
<tr>
<th>Processors</th>
<th>Time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>2880.54</td>
<td>1.00</td>
</tr>
<tr>
<td>B3-LYP</td>
<td>4022.71</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>1463.07</td>
<td>1.97</td>
</tr>
<tr>
<td>B3-LYP</td>
<td>2036.24</td>
<td>1.98</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>726.13</td>
<td>3.97</td>
</tr>
<tr>
<td>B3-LYP</td>
<td>1031.06</td>
<td>3.90</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>360.90</td>
<td>7.98</td>
</tr>
<tr>
<td>B3-LYP</td>
<td>515.95</td>
<td>7.80</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HF</td>
<td>194.39</td>
<td>14.82</td>
</tr>
<tr>
<td>B3-LYP</td>
<td>285.37</td>
<td>14.10</td>
</tr>
</tbody>
</table>

α-pinene HF/6-311G(df,p) & B3-LYP/6-31G(df,p)
346 Basis Functions
$C_{10}H_{16}$
Distributed-memory
α-pinene: Hf & DFT Scalability

HF/6-31G(df,p) & B3-LYP/6-31G(df,p)
346 Basis Functions
C$_{10}$H$_{16}$
Distributed-memory
\(\alpha\)-pinene Frequency Calculation

B3-LYP/6-31G* FREQ
182 Basis Functions
G98 Rev. A.7
shared-memory

![Chemical Structure of \(\alpha\)-pinene](image)

<table>
<thead>
<tr>
<th>Processors</th>
<th>L502</th>
<th>S(^a)</th>
<th>L1110</th>
<th>S(^a)</th>
<th>L1002</th>
<th>S(^a)</th>
<th>L703</th>
<th>S(^a)</th>
<th>Total</th>
<th>S(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1076</td>
<td>1.0</td>
<td>2802</td>
<td>1.0</td>
<td>3144</td>
<td>1.0</td>
<td>3702</td>
<td>1.0</td>
<td>10738</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>515</td>
<td>2.0</td>
<td>1402</td>
<td>2.0</td>
<td>1602</td>
<td>2.0</td>
<td>1827</td>
<td>2.0</td>
<td>5362</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>254</td>
<td>4.0</td>
<td>700</td>
<td>4.0</td>
<td>879</td>
<td>4.0</td>
<td>911</td>
<td>4.0</td>
<td>2764</td>
<td>3.9</td>
</tr>
<tr>
<td>8</td>
<td>136</td>
<td>7.9</td>
<td>359</td>
<td>7.8</td>
<td>580</td>
<td>7.9</td>
<td>471</td>
<td>7.9</td>
<td>1576</td>
<td>6.8</td>
</tr>
<tr>
<td>16</td>
<td>78</td>
<td>13.8</td>
<td>187</td>
<td>15.0</td>
<td>437</td>
<td>14.8</td>
<td>251</td>
<td>14.8</td>
<td>998</td>
<td>10.1</td>
</tr>
</tbody>
</table>

\(^a\) Speedup
\(\alpha \)-pinene Speedups

![Graph showing speedup with number of processors]

- L502
- L1110
- L1002
- L703
- Total

B3-LYP/6-31G* Frequency
182 Basis Functions
CIS Calculation

CIS=direct, 6-31++G, scf=direct, force

154 Basis Functions

Distributed-memory

G98 Rev. A.7

<table>
<thead>
<tr>
<th>Processors</th>
<th>L502</th>
<th>S<sup>a</sup></th>
<th>L914</th>
<th>S<sup>a</sup></th>
<th>L1002</th>
<th>S<sup>a</sup></th>
<th>L703</th>
<th>S<sup>a</sup></th>
<th>Total</th>
<th>S<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>821</td>
<td>1.00</td>
<td>1455</td>
<td>1.00</td>
<td>701</td>
<td>1.00</td>
<td>193</td>
<td>1.00</td>
<td>3182</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>441</td>
<td>1.86</td>
<td>776</td>
<td>1.88</td>
<td>377</td>
<td>1.86</td>
<td>97</td>
<td>1.99</td>
<td>1703</td>
<td>1.87</td>
</tr>
<tr>
<td>4</td>
<td>234</td>
<td>3.51</td>
<td>411</td>
<td>3.54</td>
<td>199</td>
<td>3.52</td>
<td>50</td>
<td>3.86</td>
<td>906</td>
<td>3.51</td>
</tr>
<tr>
<td>8<sup>b</sup></td>
<td>112</td>
<td>7.33</td>
<td>212</td>
<td>6.86</td>
<td>98</td>
<td>7.15</td>
<td>29</td>
<td>6.66</td>
<td>480</td>
<td>6.63</td>
</tr>
<tr>
<td>16</td>
<td>69</td>
<td>11.90</td>
<td>129</td>
<td>11.28</td>
<td>63</td>
<td>11.1</td>
<td>15</td>
<td>12.87</td>
<td>292</td>
<td>10.90</td>
</tr>
</tbody>
</table>

^a Speedup

^b Shared-memory

![Chemical structure](image)
CIS Scalability

Speedup

Number of Processors

CIS = direct, 6-31++G, scf = direct force
154 Basis Functions
Distributed-memory
G98 Rev. A.7
MCSCF Calculation

CAS(6,6), 6-31+G(3df), guess=cards, NOSYM

240 Basis Functions

Shared-memory

G98 Rev. A.7

<table>
<thead>
<tr>
<th>Processors</th>
<th>L510</th>
<th>(S^a)</th>
<th>Total</th>
<th>(S^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>476</td>
<td>1.00</td>
<td>483</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>238</td>
<td>2.00</td>
<td>246</td>
<td>1.96</td>
</tr>
<tr>
<td>4</td>
<td>123</td>
<td>3.87</td>
<td>134</td>
<td>3.60</td>
</tr>
<tr>
<td>8</td>
<td>67</td>
<td>7.10</td>
<td>83</td>
<td>5.82</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
<td>11.90</td>
<td>65</td>
<td>7.43</td>
</tr>
</tbody>
</table>
MCSCF Scalability

![Graph showing MCSCF Scalability](image)

- Speedup vs. Number of Processors
 - L510
 - Total

CAS(6,6), 6-31+G(3df), guess=cards, NOSYM
240 Basis Functions
Shared-memory
G98 Rev. A.7
Summary (for an n-way system)

HF: SP, Gradients, Freq
DFT: SP, Gradients, Freq
CIS: SP, Gradients, Freq
MCSCF: SP and Gradients
MP2: SP, Gradients
MP3 & MP4: SP
MP4SDTQ: SP
QCI & CC: SP

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Shared-Memory</th>
<th>Distributed-Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DFT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCSCF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP3 & MP4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP4SDTQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCI & CC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Efficiency: 0 0.2 0.4 0.6 0.8 1
Information

Gaussian official site:
http://www.gaussian.com

Institute-IBM Gaussian site:
http://www.msi.umn.edu/user_support/compchem/ gaussian_tech/

contact:
help@msi.umn.edu