Gaussian Tutorial: Estimating Resource Requirements

Carlos P. Sosa IBM
and
Patton Fast
Supercomputing Institute

Contents

－IBM SP Overview
－Review common methods
－Alternative algorithms and why the program selects them
－Estimating resource usage
－Allocating memory and disk resources for good performance
－Running Gaussian

$$
\text { 国 是 圆 断量 } \Sigma
$$

IBM SP Overview

Nodes are 4-way
Silver nodes are $333 \mathrm{MHz}, 604 e, 32$-bit

Gaussian Design

- Gaussian98 has been designed to work efficiently given a variety of computer configurations
- The program attempts to select the most efficient algorithm given the memory and disk constraints imposed upon it
- Gaussian98 offers a wide variety of algorithms
- An understanding of the possibilities and tradeoffs can help you to achieve optimal performance

Gaussian Input

\%chk=h2o
\%nproc=1
4 Control files \& system resources
\%mem=8MW
\#p hf/sto-3g opt
water optimization
Choice of computational model Type of calculation

01
-
h 1 oh
h 1 oh 2 a
Charge and multiplicity

Coordinates
$\mathrm{oh}=0.89$
a $=105$.

Link 0 Commands

\％mem＝N Sets the amount of dynamic memory used to N works（8N bytes）． The default is 6 MW ．N may be followed by a units designation： KB，MB，GB，KW，MW or GW
\％nproc（I）＝N Requests that the job use up to N processors
\％chk＝file Locates and names the checkpoint file
\％rwf＝file Locates and names a single，unified Read－Write file
\％KJob LN［M］Tells the program to stop the run after the $\mathrm{M}^{\text {th }}$ occurrence of link N
\％save Causes Link 0 to save scratch files at the end of the run
\％subst LN dir Tells Link 0 to the executable for a link from alternate directory

Sequence of Programs

L202

L303

L401

L502

L601

Read and parse route section

Read in molecule specification

Determine molecular symmetry
Set up basis set, compute oneelectron integrals

Generate initials orbitals

Solve SCF equations
Assign orbital and wavefunction symmetries, print orbitals, and perform Mulliken population analysis

Hartree-Fock Energies

$$
\begin{aligned}
& E_{H F}=\frac{\left\langle\Psi_{o}\right| H\left|\Psi_{o}\right\rangle}{\left\langle\Psi_{o} \Psi_{o}\right\rangle} ; \quad \frac{\partial E_{H F}}{\partial C_{\mu i}}=0 \\
& \sum_{\nu} F_{\mu \nu} C_{\nu i}=\varepsilon_{i} \sum_{\nu} S_{\mu \nu} C_{\nu i} \\
& F_{\mu \nu}=h_{\mu \nu}+\sum_{\lambda \sigma}[(\mu v \| \lambda \sigma)-(\mu \sigma \| \lambda v)] P_{\lambda \sigma} \\
& P_{\lambda \sigma}=\sum_{i} C_{\lambda i}^{*} C_{\sigma i} \\
& E_{H F}=\sum_{\mu \nu} P_{\mu \nu} h_{\mu \nu}+\frac{1}{2} \sum_{\mu \nu \lambda \sigma}\left[P_{\mu \nu}^{T} P_{\lambda \sigma}^{T}-P_{\mu \sigma}^{a} P_{\lambda \nu}^{a}\right](\mu \nu \| \lambda \sigma)+V_{n u c}
\end{aligned}
$$

Two-electron Integrals

Traditional approach:

- Formally $\mathrm{O}\left(\mathrm{N}^{4}\right)$; often less in practice
- Atomic Orbital (AO) basis:
- Integrals in AO basis stored on disk in random order
- Traditional approach for SCF
- Sorting into standard order involves substantial extra storage
- Molecular Orbital (MO) basis:
- Integrals transformed from AO to MO
- Stored on disk in addition to AO integrals
- Traditional approach beyond SCF

Two-electron Integrals

- Incore:
- AO integrals are stored in main memory
- Canonical order, including zeros
- No I/O
- Ordering facilitates optimization
- Direct:
- Recompute integrals as needed

Direct SCF

- Traditional approach:
- Integrals are expensive
- Compute integrals once and store
- Read integrals once each SCF iteration
- Almlof:
- Integrals aren't that expensive
- I/O can be slow
- Amount of disk limits size of calculations
- Recompute integrals each SCF iteration
- Can be clever about neglecting integrals if their use is known:

$$
\Delta F^{(n)}=F^{(n)}-F^{(n-1)}=\sum \Delta P_{\lambda \sigma}^{(n)}\langle\mu \lambda \| v \sigma\rangle
$$

Conventional SCF

Direct SCF

Incore SCF

Direct versus Conventional SCF

Almlof and Alrichs: SCF is not N^{4} !

- Direct SCF is faster than conventional for large cases

$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n} \cdot 2}$ Hydrocarbons

n	Conventional (Sec.)	InCore (Sec.)	Direct (Sec.)	Basis Functions	File Sizes(C)	File Sizes(D)
1	3.8	31.6	5.3	23	22	20
2	4.5	32.4	7.4	42	24	20
3	7.1	34.1	12.8	61	36	20
4	12.8	38.1	22.2	80	66	24
5	23.5	43.7	35.8	99	116	24
6	43.0	52.9	54.8	118	198	24
7	76.5	66.1	79.2	137	312	28
8	127.3	83.7	111.5	156	466	32
9	207.1	-	149.6	175	646	36
10	343.4	-	194.3	194	862	36

Timings on an IBM WinterHawkll, 375 MHz Gaussian98 Rev. A10
Incore memory: 900MB

Conv. \& Direct memory: 48MB

$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}+2}$ Hydrocarbons CPU (C \& D)

$C_{n} H_{n+2}$ Hydrocarbons CPU (C, D, \& I)

$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}+2}$ Hydrocarbons File Sizes

Hartree-Fock Gradients

$$
E_{H F}^{x}=\sum_{\mu \nu} P_{\mu \nu} h_{\mu \nu}^{x}+\frac{1}{2} \sum_{\mu \nu \lambda \sigma} P_{\mu \nu} P_{\lambda \sigma}(\mu \lambda \| v \sigma)+\sum_{\mu \nu} W_{\mu \nu} S_{\mu \nu}^{x}+V_{n u c}^{x}
$$

where,

$$
W_{\mu \nu}=-\sum_{\lambda \sigma} P_{\mu \lambda} F_{\lambda \sigma} P_{\sigma v}
$$

SCF Algorithms

- Direct:
- O($\left.\mathrm{N}^{2.3}\right) \mathrm{CPU}$
- Modest memory - 4 MW
- Faster than conventional
- Faster than InCore for very large jobs, but can't use InCore for these anyway
- Forces and Optimizations:
- Integral derivatives can be used as computed
- No new storage issues
- Energy + Gradient only 20-30\% more CPU than energy

MP2 Energy

$$
E_{M P 2}=E_{H F}+E^{(2)}=E_{H F}+\frac{1}{4} \sum a_{i j}^{a b}(i j \| a b)
$$

where,
$a_{i j}^{a b}=\frac{(i j \| a b)}{\varepsilon_{i}+\varepsilon_{j}-\varepsilon_{a}-\varepsilon_{b}}$
Sum for $E^{(2)}$ is $O\left(O^{2} V^{2}\right)$, so expensive step is forming (ij||ab)

Traditional MP2 Method

Traditional method: disk-based integral transformatior

Conventional MP2 Energy

Direct MP2

- Compute integrals while transforming
- Double integral evaluation permits full vectorization
- No external storage or I/O
- OVN memory minimum
- Do O^{2} VN/Memory integral evaluations, up to O total

Semi-Direct MP2

- Use memory and disk to minimize CPU time
- Sort (ia| $\lambda \sigma$) into ($\lambda \sigma \mid \mathrm{ia}$) on disk
- As little as $\mathrm{O}\left(\mathrm{N}^{2}\right)$ memory and $\mathrm{N}^{3} / 2$ disk
- Do (1/2)OVN ${ }^{2} /$ MaxDisk integral evaluations
- OVN²/2 disk for one pass

Semi-Direct MP2 Energy

InCore MP2

- Keep AO integrals in main memory
- Need double-length list
- $\mathrm{N}^{4} / 4$ memory for closed or open shell

MP2 Gradients

Traditional algorithm:

- Disk for derivatives and energy terms
- I/O time for sorting

Direct algorithm:

- N^{3} memory for each i in batch
- Size of system limited by memory

Semi-direct algorithm:

- Almost always preferred
- Minimum $\mathrm{O}\left(\mathrm{N}^{2}\right)$ memory, $\mathrm{N}^{3} / 2$ disk
- 6-8 MW for spdf

$$
\text { 国 을 葍 Iㅔㄴ } \Sigma
$$

MP2 Frequencies

- Only semi-direct algorithm
- 8MW for f functions, 12MW for g functions
- MP2=stingy option default for better disk re-use
- MP2=NoStingy uses more disk, is slightly faster
- Minimum disk
- $\mathrm{N}^{4} / 4+\mathrm{OVN}^{2} / 2$ words
- MaxDisk obeyed
- Tries calculation in minimum disk regardless

$\mathrm{C}_{n} \mathrm{H}_{n+2}$ Hydrocarbons-MP2 Calculations

n	Semi-direct (Sec.)	Fully-direc t (Sec.)	Basis Functions	File Sizes(SD)	File Sizes(FD)
1	4.7	6.2	23	28	20
2	5.6	8.7	42	29	20
3	8.5	15.5	61	42	20
4	14.9	28.4	80	71	24
5	51.3	49.2	99	126	24
6	85.0	80.4	118	221	24
7	130.9	141.6	137	361	28
8	194.3	205.9	156	548	32
9	274.5	324.5	175	779	36
10	368.0	474.7	194	1072	36

Timings on an IBM WinterHawkII, 375 MHz Gaussian98 Rev. A10
Semi-direct \& Fully Direct memory: 48MB

$C_{n} H_{n+2}$ Hydrocarbons CPU (SD \& FD)

$\mathrm{C}_{n} \mathrm{H}_{n+2}$ Hydrocarbons File Sizes-MP2

MP2－Frequency

n	Single－Point （Sec．）	Frequency （Sec．）	Basis Functions	File Sizes（SP）	File Sizes（F）
1	4.7	22.1	23	28	28
2	5.6	48.0	42	29	53
3	8.5	169.1	61	42	143
4	14.9	544.0	80	71	351
5	51.3	1464.6	99	126	751
6	85.0	3369.7	118	221	1435

Timings on an IBM WinterHawkll， 375 MHz Gaussian98 Rev．A10
Semi－direct \＆Fully Direct memory：48MB
国 올 逼 断量 Σ

MP2 Frequency \& SP CPU Comparison

MP2 Freq \& SP Disk Usage Comparison

Integral Transformation

Traditionally used for everything aftre SCF:
$(p q \mid r s)=\sum_{\sigma} C_{\sigma s} \sum_{\lambda} C_{\lambda r} \sum_{v} C_{v q} \sum_{\mu} C_{\mu p}(\mu v \mid \lambda \sigma)$

Gaussian uses semi-direct algorithm:

- Fixed minimum memory for integral evaluation
- Better behavior for large systems and limited memor
- Generate <pq||rs> during transformation
- Can make <ij||ab> using only $\mathrm{O}\left(\mathrm{O}^{2} \mathrm{~N}^{2}\right)$ disk

MAXDISK

Specifies the amount of disk storage available for scratch data, in 8-bytes words

The units can be: KB, MB, GB, KW, MW or GW
example: maxdisk=8MB

Size Dependence of Methods

Method	Formal CPU	Formal Memory	Formal Disk	Actual CPU	Actual Disk
Conv. SCF	N^{4}	$\mathrm{~N}^{2}$	$\mathrm{~N}^{4}$	$\mathrm{~N}^{3.5}$	$\mathrm{~N}^{3.5}$
Incore SCF	N^{4}	$\mathrm{~N}^{4}$	-	N^{4}	$\mathrm{~N}^{2}$
Direct SCF	N^{4}	$\mathrm{~N}^{2}$	-	$\mathrm{N}^{2.3}$	$\mathrm{~N}^{2}$
Conv. MP2	ON^{4}	$\mathrm{~N}^{2}$	$\mathrm{~N}^{4}$	ON^{4}	$\mathrm{~N}^{4}$
Dir MP2 SP	ON^{4}	OVN	-	$\mathrm{O}^{2} \mathrm{~N}^{3}$	$\mathrm{~N}^{2}$
SD MP2 SP	ON^{4}	$\mathrm{~N}^{2}$	VN^{2}	$\mathrm{O}^{2} \mathrm{~N}^{3}$	VN^{2}
Conv. MP2 Force	ON^{4}	$\mathrm{~N}^{2}$	$\mathrm{~N}^{4}$	ON^{4}	$\mathrm{~N}^{4}$
Dir MP2 Force	ON^{4}	$\mathrm{~N}^{3}$	-	$\mathrm{O}^{2} \mathrm{~N}^{3}$	$\mathrm{~N}^{2}$
SD MP2 Force	ON^{4}	$\mathrm{~N}^{2}$	$\mathrm{~N}^{3}$	$\mathrm{O}^{2} \mathrm{~N}^{3}$	$\mathrm{~N}^{3}$
MP3, CISD, QCISD	$\mathrm{O}^{2} \mathrm{~N}^{4}$	$\mathrm{~N}^{2}$	$\mathrm{~N}^{4}$	$\mathrm{O}^{2} \mathrm{~N}^{4}$	$\mathrm{~N}^{4}$
MP4, QCISD(T)	$\mathrm{O}^{3} \mathrm{~V}^{4}$	$\mathrm{~N}^{2}$	$\mathrm{~N}^{4}$	$\mathrm{O}^{3} \mathrm{~V}^{4}$	$\mathrm{~N}^{4}$

O: Number of occupied orbitals
V: Number of virtual orbitals

N : Number of basis functions

Parallel Gaussian

Efficiency Considerations

Amdahl's Law

Although a code contains parallel constructs, the serial processing in the code will dominate its
overall performance
To estimate expected parallel speedups:

$$
S(N)=\frac{1}{f_{s}+\frac{f_{P}}{N}}
$$

$S(N)$ Maximun expected speedup from parallelization $N \quad$ Number of processors available for parallel execution
$f_{p} \quad$ Fraction of a program that can execute in parallel
$f_{s} \quad$ Fraction of a program that is serial $=1-f_{p}$

Amdahl's Law Example

Estimating Memory Requirements

Single processor memory requirement $=\mathrm{M}+2 \mathrm{~N}^{2}$
$M=$ Required value for a job type
$\mathrm{N}=$ Number of Basis Functions

	f functions	g functions	h functions	i functions	j functions
SCF Energies	$\sim 6 \mathrm{MW}$	$\sim 6 \mathrm{MW}$	$\sim 12 \mathrm{MW}$	~25 MW	$\sim 64 \mathrm{MW}$
SCF Gradients	$\sim 6 \mathrm{MW}$	$\sim 7 \mathrm{MW}$	$\sim 19 \mathrm{MW}$	$\sim 40 \mathrm{MW}$	
SCF Frequencies	$\sim 6 \mathrm{MW}$	~11 MW	~30 MW		
MP2 Energies	$\sim 6 \mathrm{MW}$	$\sim 7 \mathrm{MW}$	~ 14 MW	~30 MW	$\sim 74 \mathrm{MW}$
MP2 Gradients	$\sim 6 \mathrm{MW}$	~8 MW	~18 MW	~40 MW	
MP2 Frequencies	$\sim 8 \mathrm{MW}$	$\sim 12 \mathrm{MW}$	$\sim 30 \mathrm{MW}$		

1 MW = 1,048,576 Words $=8,388,608$ bytes

Example: 300 basis functions HF geometry optimization

using g functions would require about 7.2 MW (~60MB)

FreqMem Utility

- FreqMem utility:
- Returns minimum memory size for optimal performance
- Example:
- freqmem \mathbf{N}_{A} N R/U C/D SP/SPD/SPDF
$\mathrm{N}_{\mathrm{A}} \quad=$ number of atoms
$\mathrm{N} \quad=$ number of basis functions
R/U = restricted/unrestricted
C/D = conventional/direct
SP/SPD/SPDF = functions in basis set

Memory Allocation Empirical Formula

Parallel calculations with more that one processor on shared－memory systems require additional memory
total＿mem＝sp＿mem＋（n－1）＊ 0.75 ＊sp＿mem
total＿mem＝total memory required for the parallel run sp＿mem＝single processor memory required $n \quad=$ number of processors

$$
\text { 国 是 圆 谏 } \Sigma
$$

Parallel SCF

*Deck PRSMsu

subroutine PRSMsu
loop over Nprocessors

call PRISM

end loop
loop over Nprocessors (serial code)
add $1 /$ Nprocessors Fock Matrix contributions
end loop

Parallel Speedup \& Efficiency

Speedup (S) is defined as the ratio of the serial run time (elapsed, t_{s}) over the time that it takes to do the same problem in parallel (elapsed time, t_{p})

$$
\begin{gathered}
S=\frac{t_{s}}{t_{p}} \\
e=\frac{S}{N_{\text {processors }}}
\end{gathered}
$$

Extrapolated Speedup

$$
s=\frac{1}{\left(\frac{p}{\text { Nprocessors }}\right)+(1-p)}
$$

$$
p=\frac{S_{N_{\text {processors }}}-S_{M_{\text {processors }}}}{\left(1-1 / N_{\text {processors }}\right) \times S_{N_{\text {processors }}}-\left(1-1 / M_{\text {processors }}\right) \times S_{M_{\text {processors }}}}
$$

Parallel Links in Gaussian98

Link
L302
L303
L502
L506
L508
L510
L602
L703
L906
L914
L1002
L1014
L1110
L1112

Description

Overlap integrals
One-electron properties integrals
Closed-and open-shell SCF solution
GVB solution
Quadratically convergent SCF solution
Multiconfiguration SCF solution
One-electron properties
Two-electron integral first or second derivative evaluation
Direct and semi-direct MP2 energies and gradients
Calculates excited states using CI with single excitations
CPHF soution and contribution of coefficient derivatives to Hartree-Fock second derivatives
Coupled perturbed CI singles
Two-electron contributions to Fock matrix derivatives with respect to nuclear coordinates Forms most of the terms in MP2 second derivatives l

Linda links

Crown ether Example

Processors	Elapsed Time (Sec) ${ }^{3}$	Speedup	
1	4549	1	8
2			-
ethernet ${ }^{1}$	2271	2	\bigcirc
switch ${ }^{1}$	2268	2	-2
shared-memory ${ }^{2}$	2365	2	3
8			
ethernet ${ }^{1}$	652	7	
switch ${ }^{1}$	610	7	$\left(\mathrm{OCH}_{2}\right)_{7}$, Crown ether
shared-memory ${ }^{2}$	626	7	HF/6-31G* FOPT OPTCYC=í
16			
ethernet ${ }^{1}$	442	10	
switch ${ }^{1}$	372	12	
shared-memory ${ }^{2}$	386	12	
${ }^{1} 16 \mathrm{X}$ (4-way node), Power3-II, 375 MHz	L2	
${ }^{2} 1 \mathrm{X}(16$-way node)	, Power3-II, 375 MHz ,		
${ }^{3}$ Gaussian98 Rev.	A.7, xlf 5.1.1 Compiler		

Crown ether Parallel Speedup

Speedup

国 呈 葍 断皀 Σ

test178

test178: RHF/6-31G** SCF=DIRECT POP=NPA PROP=FIT

300 Basis Functions

Full Point Group $\mathrm{D}_{3 \mathrm{H}}$

Processor	Time	Speedup
1	153.39	1.00
2	109.86	1.39
4	82.90	1.85
8	90.01	1.70
16	84.48	1.82

Gaussian 98 Rev. A. 7
Shared-memory

test178 Scalability

Symmetry reduces the total number of integrals
$\xrightarrow[-]{\mathbf{S}}$
test178: RHF/6-31G** SCF=DIRECT POP=NPA PROP=FIT
300 Basis Functions
Full Point Group $\mathrm{D}_{3 \mathrm{H}}$

α－pinene SP Scalability

Porcessors 1 HF	Time	Speedup
	2880.54	1.00
$\begin{gathered} \text { B3-LYP } \\ 2 \end{gathered}$	4022.71	1.00
$\begin{gathered} \mathrm{HF} \\ \text { B3-LYP } \end{gathered}$	1463.07	1.97
	2036.24	1.98
4		
$\begin{gathered} \mathrm{HF} \\ \text { B3-LYP } \end{gathered}$	726.13	3.97
	1031.06	3.90
8		
$\begin{gathered} \mathrm{HF} \\ \text { B3-LYP } \end{gathered}$	360.90	7.98
	515.95	7.80
16		
HF	194.39	14.82
B3－LYP	285.37	14.10

ג－pinene HF／6－311G（df，p）\＆
B3－LYP／6－31G（df，p）
346 Basis Functions
$C_{10} H_{16}$
Distributed－memory

回 是 葍 归 Σ

α-pinene: Hf \& DFT Scalability

HF/6-311G(df,p) \& B3-LYP/6-31G(df,p)
346 Basis Functions
$\mathrm{C}_{10} \mathrm{H}_{16}$
Distributed-memoy

α-pinene Frequency Calculation

B3-LYP/6-31G* FREQ

 182 Basis FunctionsG98 Rev. A. 7 shared-memory

Time in Sec.

Processors	L502	$\mathbf{S}^{\text {a }}$	L1110	$\mathbf{S}^{\text {a }}$	L1002	$\mathrm{S}^{\text {a }}$	L703	$\mathbf{S}^{\text {a }}$	Total	$S^{\text {a }}$
1	1076	1.0	2802	1.0	3144	1.	3702	1.0	10738	1.0
2	515	2.0	1402	2.0	1602	2.	1827	2.0	5362	2.0
4	254	4.0	700	4.0	879	3.	911	4.0	2764	3.9
a Sp^{8}	136	7.9	359	7.8	580	5.	471	7.9	1576	6.8
16	78	13.8	187	15.	437	7.	251	14.8	998	10.1
				0		2				

α-pinene Speedups

CIS Calculation

CIS=direct, 6-31++G, scf=direct, force

154 Basis Functions

Distributed-memory G98 Rev. A. 7

Processors	L502	$S^{\text {a }}$	L914	$S^{\text {a }}$	L1002	$S^{\text {a }}$	L703	$S^{\text {a }}$	Total	$S^{\text {a }}$
1	821	1.00	1455	1.00	701	1.00	193	1.00	3182	1.00
2	441	1.86	776	1.88	377	1.86	97	1.99	1703	1.87
4	234	3.51	411	3.54	199	3.52	50	3.86	906	3.51
$8{ }^{\text {b }}$	112	7.33	212	6.86	98	7.15	29	6.66	480	6.63
16	69	11.90	129	11.28	63	$\begin{array}{r} 11.1 \\ 3 \end{array}$	15	12.87	292	10.90
${ }^{\text {a }}$ Speedup										
${ }^{\text {b }}$ Shared-memory										
						寝	畺	[1]	$\square \Sigma$	

CIS Scalability

MCSCF Calculation

CAS(6,6), 6-31+G(3df), guess=cards, NOSYM
240 Basis Functions
Shared-memory
G98 Rev. A. 7

Processors L510 \mathbf{S}^{a} Total $\mathbf{S}^{\mathbf{a}}$

1	476	1.00	483	1.00
2	238	2.00	246	1.96
4	123	3.87	134	3.60
8	67	7.10	83	5.82
16	40	11.90	65	7.43

MCSCF Scalability

CAS $(6,6), 6-31+G(3 d f)$, guess=cards, NOSYM 240 Basis Functions Shared-memory G98 Rev. A. 7

Summary (for an n-way system)

Information

Gaussian official site:
http://www.gaussian.com
Institute-IBM Gaussian site:
http://www.msi.umn.edu/user_support/compchem/gaussian_tech/
contact:
help@msi.umn.edu

